Recent News
UNM receives $1.5 million to support computational workforce development
May 8, 2023
Tapia elected to Computing Research Association Board of Directors
March 3, 2023
UNM computer science students take part in HPC competition
March 3, 2023
Computer science professor, student part of AI panel on March 8
February 24, 2023
News Archives
[Colloquium] Multiparameter Computational Modeling of Tumor Invasion
May 5, 2011
Watch Colloquium:
M4V file (744 MB)
- Date: Thursday, May 5, 2011
- Time: 11:00 am — 11:50 am
- Place: Mechanical Engineering 218
Vittorio Cristini
Victor & Ruby Hansen Surface Professor of Pathology, Chemical and Biomedical Engineering at the University of New Mexico
Clinical outcome prognostication in oncology is a guiding principle in therapeutic choice. A wealth of qualitative empirical evidence links disease progression with tumor morphology, histopathology, invasion, and associatedmolecular phenomena. However, the quantitative contribution of each of the known parameters in this progression remains elusive. Mathematical modeling can provide the capability to quantify the connection between variables governing growth, prognosis, and treatment outcome. By quantifying the link between the tumor boundary morphology and the invasive phenotype, this work provides a quantitative tool for the study of tumor progression and diagnostic/prognostic applications. This establishes a framework for monitoring system perturbation towards development of therapeutic strategies and correlation to clinical outcome for prognosis.
Clinical outcome prognostication in oncology is a guiding principle in therapeutic choice. A wealth of qualitative empirical evidence links disease progression with tumor morphology, histopathology, invasion, and associatedmolecular phenomena. However, the quantitative contribution of each of the known parameters in this progression remains elusive. Mathematical modeling can provide the capability to quantify the connection between variables governing growth, prognosis, and treatment outcome. By quantifying the link between the tumor boundary morphology and the invasive phenotype, this work provides a quantitative tool for the study of tumor progression and diagnostic/prognostic applications. This establishes a framework for monitoring system perturbation towards development of therapeutic strategies and correlation to clinical outcome for prognosis.